Классификация картографических проекций. Картографические проекции их виды и свойства Какая из перечисленных проекций как правило используется

Картографическая проекция – способ построения изображения поверхности Земли и, прежде всего, сетки меридианов и параллелей (координатной сетки) на плоскости. В каждой проекции координатная сетка изображается по-разному, характер искажений также различен, т.е. проекции имеют определенные различия, что вызывает необходимость их классифицировать. Все картографические проекции принято классифицировать по двум признакам:

По характеру искажений;

По виду нормальной сетки меридианов и параллелей.

По характеру искажений проекции делятся на следующие группы :

1. Равноугольные (комфорные) – проекции, в которых бесконечно малые фигуры на картах подобны соответствующим фигурам на земной поверхности. Эти проекции получили широкое распространение в аэронавигации, так как они позволяют наиболее просто определять направления и углы. Кроме того, конфигурация небольших площадных ориентиров передается без искажений, что существенно для ведения визуальной ориентировки.

2. Равновеликие (эквивалентные) – проекции, в которых сохраняется отношение площадей на картах и на земной поверхности. Эти проекции нашли применение в мелкомасштабных обзорных географических картах.

3. Равнопромежуточные – проекции, в которых расстояние по меридиану и параллели изображаются без искажений. Эти проекции применяются для создания справочных карт.

4. Произвольные – проекции, не обладающие ни одним из перечисленных выше свойств. Эти проекции широко применяются в аэронавигации, так как имеют практически небольшие искажения углов, длин и площадей, что позволяет их не учитывать.

По виду нормальной координатной сетки меридианов и параллелей проекции делятся на: конические, поликонические, цилиндрические и азимутальные .



Построение картографической сетки может быть представлено как результат проектирования поверхности Земли на вспомогательную геометрическую фигуру: конус, цилиндр или плоскость (рис. 2.2) .


Рис. 2.2. Расположение вспомогательной геометрической фигуры

В зависимости от расположения вспомогательной геометрической фигуры относительно оси вращения Земли, различают три вида проекций (рис. 2.2):

1. Нормальные – проекции, в которых ось вспомогательной фигуры совпадает с осью вращения Земли.

2. Поперечные – проекции, в которых ось вспомогательной фигуры перпендикулярна к оси вращения Земли, т.е. совпадает с плоскостью экватора.

3. Косые – проекции, в которых ось вспомогательной фигуры составляет с осью вращения Земли косой угол.

Конические проекции. Для решения задач аэронавигации из всех конических проекций применяется нормальная равноугольная коническая проекция, построенная на касательном или секущем конусе.

Нормальная равноугольная коническая проекция на касательном конусе. На картах, составленных в этой проекции, меридианы имеют вид прямых, сходящихся к полюсу (рис. 2.3). Параллели представляют собой дуги концентрических окружностей, расстояние между которыми увеличивается по мере удаления от параллели касания. В этой проекции издаются для авиации карты масштаба 1: 2 000 000, 1: 2 500 000, 1: 4 000 000 и 1: 5 000 000.

Рис. 2.3. Нормальная равноугольная коническая проекция на касательном конусе

Нормальная равноугольная коническая проекция на секущем конусе. На картах, составленных в этой проекции, меридианы изображены прямыми сходящимися линиями, а параллели дугами окружностей (рис. 2.4). В этой проекции издаются для авиации карты масштаба 1: 2 000 000 и 1: 2 500 000.



Рис. 2.4. Нормальная равноугольная коническая проекция на

секущем конусе

Поликонические проекции. Практического применения в авиации поликонические проекции не имеют, но она положена в основу международной проекции, в которой издают большинство авиационных карт.

Видоизмененная поликоническая (международная) проекция. В 1909 г. в Лондоне международный комитет разработал видоизмененную поликоническую проекцию для карт масштаба 1: 1 000 000, которая получила название международной. Меридианы в этой проекции имеют вид прямых линий, сходящихся к полюсу, а параллели – дуг концентрических окружностей (рис. 2.5).

Рис. 2.5. Видоизмененная поликоническая проекция

Лист карты занимает по широте 4°, а по долготе 6°. В настоящее время эта проекция является самой распространенной и в ней издается большинство авиационных карт масштабов 1: 1 000 000, 1: 2 000 000 и 1: 4 000 000.

Цилиндрические проекции. Из цилиндрических проекций в аэронавигации нашли применение нормальная, поперечная и косая проекции .

Нормальная равноугольная цилиндрическая проекция. Эта проекция была предложена в 1569 г. голландским картографом Меркатором. На картах, составленных в этой проекции, меридианы имеют вид прямых, параллельных между собой и отстоящих друг от друга на расстояниях, пропорциональных разности долгот (рис. 2.6). Параллели – прямые, перпендикулярные меридианам. Расстояния между параллелями увеличивается с увеличением широты. В нормальной равноугольной цилиндрической проекции издаются морские навигационные карты.


Рис. 2.6. Нормальная равноугольная цилиндрическая проекция

Равноугольная поперечно-цилиндрическая проекция. Эта проекция была предложена немецким математиком Гауссом. Проекция строится по математическим законам. Для уменьшения искажения длин поверхность Земли разрезается на 60 зон. Каждая такая зона занимает по долготе 6°. Из рис. 2.7 видно, что средний меридиан в каждой зоне и экватор изображаются прямыми взаимно перпендикулярными линиями. Все остальные меридианы и параллели изображаются кривыми малой кривизны. В равноугольной поперечно-цилиндрической проекции составлены карты масштабов 1: 500 000, 1: 200 000 и 1: 100 000 и крупнее.



Рис. 2.7. Равноугольная поперечно-цилиндрическая проекция

Косая равноугольная цилиндрическая проекция. В этой проекции наклон цилиндра к оси вращения Земли подбирают таким образом, чтобы его боковая поверхность касалась оси маршрута (рис. 2.8). Меридианы и параллели в рассматриваемой проекции имеют вид кривых линий. На картах в этой проекции в полосе по 500 – 600 км от осевой линии маршрута искажение длин не превышает 0.5%. В косой равноугольной цилиндрической проекции издаются карты масштабов 1: 1 000 000, 1: 2 000 000 и 1: 4 000 000 для обеспечения полетов по отдельным протяженным трассам.


Рис. 2.8. Косая равноугольная цилиндрическая проекция

Азимутальные проекции. Из всех азимутальных проекций для целей аэронавигации применяют, в основном, центральные и стереографические полярные проекции.

Центральная полярная проекция. На картах, составленных в этой проекции, меридианы имеют вид прямых линий, расходящихся от полюса под углом, равным разности долгот (рис. 2.9). Параллели – концентрические окружности, расстояния между которыми по мере удаления от полюса увеличиваются. В этой проекции ранее издавались карты Арктики и Антарктики масштабов 1: 2 000 000 и 1: 5 000 000.


Рис. 2.10. Стереографическая полярная проекция

В стереографической полярной проекции издаются карты Арктики и Антарктики масштабов 1: 2 000 000 и 1: 4 000 000.

Картографические проекции

отображения всей поверхности земного эллипсоида (См. Земной эллипсоид) или какую-либо её части на плоскость, получаемые в основном с целью построения карты.

Масштаб. К. п. строятся в определённом масштабе. Уменьшая мысленно земной эллипсоид в М раз, например в 10 000 000 раз, получают его геометрическую модель - Глобус , изображение которого уже в натуральную величину на плоскости даёт карту поверхности этого эллипсоида. Величина 1: М (в примере 1: 10 000 000) определяет главный, или общий, масштаб карты. Т. к. поверхности эллипсоида и шара не могут быть развёрнуты на плоскость без разрывов и складок (они не принадлежат к классу развёртывающихся поверхностей (См. Развёртывающаяся поверхность)), любой К. п. присущи искажения длин линий, углов и т.п., свойственные всякой карте. Основной характеристикой К. п. в любой её точке является частный масштаб μ. Это - величина, обратная отношению бесконечно малого отрезка ds на земном эллипсоиде к его изображению на плоскости: μ min ≤ μ ≤ μ max , и равенство здесь возможно лишь в отдельных точках или вдоль некоторых линий на карте. Т. о., главный масштаб карты характеризует её только в общих чертах, в некотором осреднённом виде. Отношение μ/М называют относительным масштабом, или увеличением длины, разность М = 1.

Общие сведения. Теория К. п. - Математическая картография - имеет своей целью изучение всех видов искажений отображений поверхности земного эллипсоида на плоскость и разработку методов построения таких проекций, в которых искажения имели бы или наименьшие (в каком-либо смысле) значения или заранее заданное распределение.

Исходя из нужд картографии (См. Картография), в теории К. п. рассматривают отображения поверхности земного эллипсоида на плоскость. Т. к. земной эллипсоид имеет малое сжатие, и его поверхность незначительно отступает от сферы, а также в связи с тем, что К. п. необходимы для составления карт в средних и мелких масштабах (М > 1 000 000), то часто ограничиваются рассмотрением отображений на плоскость сферы некоторого радиуса R , отклонениями которой от эллипсоида можно пренебречь или каким-либо способом учесть. Поэтому далее имеются в виду отображения на плоскость хОу сферы, отнесённой к географическим координатам φ (широта) и λ (долгота).

Уравнения любой К. п. имеют вид

x = f 1 (φ, λ), y = f 2 (φ, λ) , (1)

где f 1 и f 2 - функции, удовлетворяющие некоторым общим условиям. Изображения меридианов λ = const и параллелей φ = const в данной К. п. образуют картографическую сетку. К. п. может быть определена также двумя уравнениями, в которых фигурируют не прямоугольные координаты х , у плоскости, а какие-либо иные. Некоторые К. п. [например, Перспективные проекции (в частности, ортографические, рис. 2 ) перспективно-цилиндрические (рис. 7 ) и др.] можно определить геометрическими построениями. К. п. определяют также правилом построения соответствующей ей картографической сетки или такими её характеристическими свойствами, из которых могут быть получены уравнения вида (1), полностью определяющие проекцию.

Краткие исторические сведения. Развитие теории К. п., как и всей картографии, тесно связано с развитием геодезии, астрономии, географии, математики. Научные основы картографии были заложены в Древней Греции (6-1 вв. до н. э.). Древнейшей К. п. считается Гномоническая проекция , примененная Фалесом Милетским к построению карт звёздного неба. После установления в 3 в. до н. э. шарообразности Земли К. п. стали изобретаться и использоваться при составлении географических карт (Гиппарх , Птолемей и др.). Значительный подъём картографии в 16 в., вызванный Великими географическими открытиями, привёл к созданию ряда новых проекций; одна из них, предложенная Г. Меркатор ом, используется и в настоящее время (см. Меркатора проекция). В 17-18 вв., когда широкая организация топографических съёмок стала поставлять достоверный материал для составления карт на значительной территории, К. п. разрабатывались как основа для топографических карт (французский картограф Р. Бонн, Дж. Д. Кассини), а также выполнялись исследования отдельных наиболее важных групп К. п. (И. Ламберт , Л. Эйлер , Ж. Лагранж и др.). Развитие военной картографии и дальнейшее увеличение объёма топографических работ в 19 в. потребовали обеспечения математической основы крупномасштабных карт и введения системы прямоугольных координат на базе, более подходящей К. п. Это привело К. Гаусс а к разработке фундаментальной геодезической проекции (См. Геодезические проекции). Наконец, в середине 19 в. А. Тиссо (Франция) дал общую теорию искажений К. п. Развитие теории К. п. в России было тесно связано с запросами практики и дало много оригинальных результатов (Л. Эйлер, Ф. И. Шуберт , П. Л. Чебышев , Д. А. Граве и др.). В трудах советских картографов В. В. Каврайского (См. Каврайский), Н. А. Урмаев а и др. разработаны новые группы К. и., отдельные их варианты (до стадии практического использования), важные вопросы общей теории К. п., классификации их и др.

Теория искажений. Искажения в бесконечно малой области около какой-либо точки проекции подчиняются некоторым общим законам. Во всякой точке карты в проекции, не являющейся равноугольной (см. ниже), существуют два таких взаимно перпендикулярных направления, которым на отображаемой поверхности соответствуют также взаимно перпендикулярные направления, это - так называемые главные направления отображения. Масштабы по этим направлениям (главные масштабы) имеют экстремальные значения: μ max = а и μ min = b . Если в какой-либо проекции меридианы и параллели на карте пересекаются под прямым углом, то их направления и есть главные для данной проекции. Искажение длины в данной точке проекции наглядно представляет эллипс искажений, подобный и подобно расположенный изображению бесконечно малой окружности, описанной вокруг соответствующей точки отображаемой поверхности. Полудиаметры этого эллипса численно равны частным масштабам в данной точке в соответствующих направлениях, полуоси эллипса равны экстремальным масштабам, а направления их - главные.

Связь между элементами эллипса искажений, искажениями К. п. и частными производными функций (1) устанавливается основными формулами теории искажений.

Классификация картографических проекций по положению полюса используемых сферических координат. Полюсы сферы суть особые точки географической координации, хотя сфера в этих точках не имеет каких-либо особенностей. Значит, при картографировании областей, содержащих географические полюсы, желательно иногда применять не географические координаты, а другие, в которых полюсы оказываются обыкновенными точками координации. Поэтому на сфере используют сферические координаты, координатные линии которых, так называемые вертикалы (условная долгота на них а = const ) и альмукантараты (где полярные расстояния z = const ), аналогичны географическим меридианам и параллелям, но их полюс Z 0 не совпадает с географическим полюсом P 0 (рис. 1 ). Переход от географических координат φ , λ любой точки сферы к её сферическим координатам z , a при заданном положении полюса Z 0 (φ 0 , λ 0) осуществляется по формулам сферической тригонометрии. Всякая К. п., данная уравнениями (1), называется нормальной, или прямой (φ 0 = π/2 ). Если та же самая проекция сферы вычисляется по тем же формулам (1), в которых вместо φ , λ фигурируют z , a , то эта проекция называется поперечной при φ 0 = 0 , λ 0 и косой, если 0 . Применение косых и поперечных проекций приводит к уменьшению искажений. На рис. 2 показана нормальная (а), поперечная (б) и косая (в) ортографические проекции (См. Ортографическая проекция) сферы (поверхности шара).

Классификация картографических проекций по характеру искажений. В равноугольных (конформных) К. п. масштаб зависит только от положения точки и не зависит от направления. Эллипсы искажений вырождаются в окружности. Примеры - проекция Меркатор, Стереографическая проекция .

В равновеликих (эквивалентных) К. п. сохраняются площади; точнее, площади фигур на картах, составленных в таких проекциях, пропорциональны площадям соответствующих фигур в натуре, причём коэффициент пропорциональности - величина, обратная квадрату главного масштаба карты. Эллипсы искажений всегда имеют одинаковую площадь, различаясь формой и ориентировкой.

Произвольные К. п. не относятся ни к равноугольным, ни к равновеликим. Из них выделяют равнопромежуточные, в которых один из главных масштабов равен единице, и ортодромические, в которых большие круги шара (ортодромы) изображаются прямыми.

При изображении сферы на плоскости свойства равноугольности, равновеликости, равнопромежуточности и ортодромичности несовместимы. Для показа искажений в разных местах изображаемой области применяют: а) эллипсы искажений, построенные в разных местах сетки или эскиза карты (рис. 3 ); б) изоколы, т. е. линии равного значения искажений (на рис. 8в см. изоколы наибольшего искажения углов со и изоколы масштаба площадей р ); в) изображения в некоторых местах карты некоторых сферических линий, обычно ортодромий (О) и локсодромий (Л), см. рис. 3а , и др.

Классификация нормальных картографических проекций по виду изображений меридианов и параллелей, являющаяся результатом исторического развития теории К. п., объемлет большинство известных проекций. В ней сохранились наименования, связанные с геометрическим методом получения проекций, однако рассматриваемые их группы теперь определяют аналитически.

Цилиндрические проекции (рис. 3 ) - проекции, в которых меридианы изображаются равноотстоящими параллельными прямыми, а параллели - прямыми, перпендикулярными к изображениям меридианов. Выгодны для изображения территорий, вытянутых вдоль экватора или какие-либо параллели. В навигации используется проекция Меркатора - равноугольная цилиндрическая проекция. Проекция Гаусса - Крюгера - равноугольная поперечно-цилиндрическая К. п. - применяется при составлении топографических карт и обработке триангуляций.

Азимутальные проекции (рис. 5 ) - проекции, в которых параллели - концентрические окружности, меридианы - их радиусы, при этом углы между последними равны соответствующим разностям долгот. Частным случаем азимутальных проекций являются перспективные проекции.

Псевдоконические проекции (рис. 6 ) - проекции, в которых параллели изображаются концентрическими окружностями, средний меридиан - прямой линией, остальные меридианы - кривыми. Часто применяется равновеликая псевдоконическая проекция Бонна; в ней с 1847 составлялась трёхвёрстная (1: 126 000) карта Европейской части России.

Псевдоцилиндрические проекции (рис. 8 ) - проекции, в которых параллели изображаются параллельными прямыми, средний меридиан - прямой линией, перпендикулярной этим прямым и являющейся осью симметрии проекций, остальные меридианы - кривыми.

Поликонические проекции (рис. 9 ) - проекции, в которых параллели изображаются окружностями с центрами, расположенными на одной прямой, изображающей средний меридиан. При построении конкретных поликонических проекций ставятся дополнительные условия. Одна из поликонических проекций рекомендована для международной (1: 1 000 000) карты.

Существует много проекций, не относящихся к указанным видам. Цилиндрические, конические и азимутальные проекции, называемые простейшими, часто относят к круговым проекциям в широком смысле, выделяя из них круговые проекции в узком смысле - проекции, в которых все меридианы и параллели изображаются окружностями, например конформные проекции Лагранжа, проекция Гринтена и др.

Использование и выбор картографических проекций зависят главным образом от назначения карты и её масштаба, которыми часто обусловливается характер допускаемых искажений в избираемой К. п. Карты крупных и средних масштабов, предназначенные для решения метрических задач, обычно составляют в равноугольных проекциях, а карты мелких масштабов, используемые для общих обозрений и определения соотношения площадей каких-либо территорий - в равновеликих. При этом возможно некоторое нарушение определяющих условий этих проекций (ω ≡ 0 или р ≡ 1 ), не приводящее к ощутимым погрешностям, т. е. допустим выбор произвольных проекций, из которых чаще применяют проекции равнопромежуточные по меридианам. К последним прибегают и тогда, когда назначением карты вообще не предусмотрено сохранение углов или площадей. При выборе К. п. начинают с простейших, затем переходят к более сложным проекциям, даже, возможно, модифицируя их. Если ни одна из известных К. п. не удовлетворяет требованиям, предъявляемым к составляемой карте со стороны её назначения, то изыскивают новую, наиболее подходящую К. п., пытаясь (насколько это возможно) уменьшить искажения в ней. Проблема построения наивыгоднейших К. п., в которых искажения в каком-либо смысле сведены до минимума, полностью ещё не решена.

К. п. используются также в навигации, астрономии, кристаллографии и др.; их изыскивают для целей картографирования Луны, планет и др. небесных тел.

Преобразование проекций. Рассматривая две К. п., заданные соответствующими системами уравнений: x = f 1 (φ, λ) , y = f 2 (φ, λ) и X = g 1 (φ, λ) , Y = g 2 (φ, λ) , можно, исключая из этих уравнении φ и λ, установить переход от одной из них к другой:

Х = F 1 (x, у) , Y = F 2 (x, у) .

Эти формулы при конкретизации вида функций F 1 , F 2 , во-первых, дают общий метод получения так называемых производных проекций; во-вторых, составляют теоретическую основу всевозможных способов технических приёмов составления карт (см. Географические карты). Например, аффинные и дробно-линейные преобразования осуществляются при помощи картографических трансформаторов (См. Картографический трансформатор). Однако более общие преобразования требуют применения новой, в частности электронной, техники. Задача создания совершенных трансформаторов К. п. - актуальная проблема современной картографии.

Лит.: Витковский В., Картография. (Теория картографических проекций), СПБ. 1907; Каврайский В. В., Математическая картография, М. - Л., 1934; его же, Избр. труды, т. 2, в. 1-3, [М.], 1958-60; Урмаев Н. А., Математическая картография, М., 1941; его же, Методы изыскания новых картографических проекций, М., 1947; Граур А. В., Математическая картография, 2 изд., Л., 1956; Гинзбург Г. А., Картографические проекции, М., 1951; Мещеряков Г. А., Теоретические основы математической картографии, М., 1968.

Г. А. Мещеряков.

2. Шар и его ортографические проекции.

3а. Цилиндрические проекции. Равноугольная Меркатора.

3б. Цилиндрические проекции. Равнопромежуточная (прямоугольная).

3в. Цилиндрические проекции. Равновеликая (изоцилиндрическая).

4а. Конические проекции. Равноугольная.

4б. Конические проекции. Равнопромежуточная.

4в. Конические проекции. Равновеликая.

Рис. 5а. Азимутальные проекции. Равноугольная (стереографическая) слева - поперечная, справа - косая.

Рис. 5б. Азимутальные проекции. Равнопромежуточная (слева - поперечная, справа - косая).

Рис. 5в. Азимутальные проекции. Равновеликая (слева - поперечная, справа - косая).

Рис. 8а. Псевдоцилиндрические проекции. Равновеликая проекция Мольвейде.

Рис. 8б. Псевдоцилиндрические проекции. Равновеликая синусоидальная проекция В. В. Каврайского.

Рис. 8в. Псевдоцилиндрические проекции. Произвольная проекция ЦНИИГАиК.

Рис. 8г. Псевдоцилиндрические проекции. Проекция БСАМ.

Рис. 9а. Поликонические проекции. Простая.

Рис. 9б. Поликонические проекции. Произвольная проекция Г. А. Гинзбурга.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Картографические проекции" в других словарях:

    Математические способы изображения на плоскости поверхности земного эллипсоида или шара. Картографические проекции определяют зависимость между координатами точек на поверхности земного эллипсоида и на плоскости. Из за невозможности развернуть… … Большой Энциклопедический словарь

    КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ, системные методы нанесения меридианов и параллелей Земли на плоскую поверхность. Только на глобусе можно достоверно представить территории и формы. На плоских картах больших территорий искажения неизбежны. Проекции это… … Научно-технический энциклопедический словарь

ЛЕКЦИЯ №4

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ

K артографическими проекциями называют математические способы изображения на плоскости поверхности земного эллипсоида или шара. Изображение градусной сетки Земли на карте называют картографической сеткой, а точки пересечения меридианов и параллелей - узловыми точками.

Построение карт включает сначала изображение на плоскости (бумаге) картографической сетки, а затем заполнение клеток сетки контурами и другими обозначениями географических объектов. Построение сетки может быть осуществлено различными способами. Так, при применении перспективных проекций картографическая сетка получается как бы проектированием узловых точек с поверхности шара на плоскость (рис.4) или на другую геометрическую поверхность (конус, цилиндр), которая затем развертывается в плоскость без искажений. Пример практического построения перспективным способом картографической сетки северного полушария приведен на рисунке 4.

Картинная плоскость Р касается здесь поверхности северного полушария в точке Северного полюса. Прямолинейными проектирующими лучами из центра К узловые точки пересечения меридиана с экватором и параллелями 30° и 60° широты переносятся на картинную плоскость. Тем самым определяются радиусы этих параллелей на плоскости. Меридианы изображаются на плоскости прямыми линиями, исходящими из точки полюса и отстоящими друг от друга под равными углами. На рисунке изображена половина сетки. Вторую половину легко мысленно представить, а при необходимости и построить.

Построение карты методами перспективных проекций не требует использования высшей математики, поэтому их начали применять еще задолго до ее разработки, с глубокой древности. Ныне в картографическом производстве карты строят неперспективными метода ми - путем расчета положения узловых точек картографической сетки на плоскости. Расчет выполняют, решая систему уравнений, связывающих широту и долготу узловых точек с их прямоугольными координатами X и Y на плоскости. Применяемые при этом уравнения довольно сложны. Примером сравнительно простых формул могут быть следующие:

Х=R´ sin j

Y= R ´ cos j-sinl.

В этих уравнениях R - радиус (средний) Земли, округленно принимаемый за 6370 км, а j, l - географические координаты узловых точек.

Классификация картографических проекций

Применяемые для построения географических карт проекции можно группировать по разным классификационным признакам, из которых основными являются: а) вид «вспомогательной поверхности» и ее ориентировка, б) характер искажений.

Классификация картографических проекций по виду вспомога тельной поверхности и ее ориентировке. Картографические сетки карт получают в современном производстве аналитическим путем. Однако в названиях проекций сохранены по традиции термины «цилиндрические», «конические» и другие, соответствующие способам геометрических построений, к которым в прошлом прибегали для построения сеток) Использование при объяснении этих терминов поможет уяснить особенности полученных на их основе картографических сеток. В настоящее время данный классификационный признак трактуется как вид нормальной картографической сетки

Цилиндрические проекции . При построении цилиндрических проекций представляют, что узловые точки, а значит, и линии градусной сети проектируют с шаровой поверхности глобуса на боковую поверхность цилиндра, ось которого совпадает с осью глобуса, а диаметры обоих тел равны (рис.5). Используя касательный цилиндр в качестве вспомогательной поверхности, учитывают, что узловые точки экватора - А, В, С, D и другие одновременно находятся и на глобусе, и на цилиндре. Другие же узловые точки переносятся с глобуса на поверхность цилиндра. Так, точки Е и F , расположенные на одном меридиане с точкой С, переносятся в точки £" и F \ При этом они на цилиндре расположатся на прямой, перпендикулярной линии экватора. Это и определяет форму меридианов в данной проекции. Параллели на поверхность цилиндра проектируются в форме окружностей, параллельных линии экватора (например, параллель, в которой находятся точки F [ и e").

При развертке поверхности цилиндра в плоскость все линии картографической сетки оказываются прямыми, меридианы перпендикулярны параллелям и отстоят друг от друга на равных расстояниях. Таков общий вид картографической сетки, построенной с помощью цилиндра, касательного к глобусу и имеющего с ним общую ось

У таких цилиндрических проекций линией нулевых искажений служит экватор, а изоколы имеют форму прямых, параллельных экватору; главные направления совпадают с линиями картографической сетки, при этом с удалением от экватора искажения увеличиваются.

В этих проекциях применяют также проектирование на цилиндры с диаметром меньшим, чем диаметр глобуса, и по-разному относительно глобуса расположенные. В зависимости от ориентировки цилиндра полученные картографические сетки (как и сами проекции) называют нормальными, косыми или поперечными. Нормальные цилиндрические сетки строят на цилиндрах, оси которых совпадают с осью глобуса; косые - на цилиндрах, ось которых составляет с осью глобуса острый угол; поперечные сетки образуются с помощью цилиндра, ось которого составляет прямой угол с осью глобуса.

Нормальная цилиндрическая картографическая сетка на касательном цилиндре имеет линию нулевых искажений на экваторе. Нормальная сетка на секущем цилиндре имеет две линии нулевых иска­жений, расположенных вдоль параллелей сечения цилиндра с глобусом (с широтами j1 и j2). При этом, вследствие сжатия участка сетки между линиями нулевых искажений, масштабы длин по параллелям оказываются здесь меньше главного; во внешнюю же сторону от линий нулевых искажений они больше главного масштаба - как результат растяжения параллелей при проектировании с глобуса на цилиндр.

Косая цилиндрическая сетка на секущем цилиндре имеет в северной части линию нулевых искажений в форме прямой, перпендикулярной к среднему меридиану карты и касательной к параллели с широтой j; внешний вид сетки представлен кривыми линиями меридианов и параллелей.

Примером поперечной цилиндрической проекции может служить проекция Гаусса-Крюгера, в которой каждый поперечно расположенный цилиндр используется для проектирования поверхности одной зоны Гаусса.

Конические проекции. Для построения картографических сеток в конических проекциях используют нормальные конусы - касательный или секущий.

рис.6

рис.7

У всех нормальных конических проекций специфичен внешний вид картографической сетки: меридианы - прямые, сходящиеся в точке, изображающей на плоскости вершину конуса, параллели - дуги концентрических окружностей с центром в точке схода меридианов. У сеток, построенных на касательных конусах, одна линия нулевых искажений, с удалением от которой искажения увеличиваются (рис.6). Изоколы у них имеют форму дуг окружностей, совпадающих с параллелями. Сетки, построенные на секущем конусе (рис. 6 Б), имеют тот же облик, но иное распределение искажений: линий нулевых искажений у них две. Между ними частные масштабы вдоль параллелей меньше главного, а на внешних участках сетки - больше главного масштаба. Главные направления у всех нормальных конических сеток совпадают с меридианами и параллелями.

Азимутальные проекции. Азимутальными называют картографические сетки, которые получают проектированием градусной сетки глобуса на касательную плоскость (рис.). Нормальную ази мутальную сетку получают в результате переноса на плоскость, касательную к глобусу в точке полюса (рис. 7 А), попереч ную - при касании плоскости в точке экватора (рис. 7, Б) и ко сую - при переносе на иначе ориентированную плоскость (рис.7 , В). Внешний вид сеток хорошо виден на рисунке 7.

Все азимутальные сетки имеют в отношении искажений следующие общие свойства: точкой нулевых искажений (ТНИ) служит точка касания глобуса с плоскостью (обычно она располагается в центре карты); величины искажений с удалением во все стороны от ТНИ возрастают, поэтому изоколы у азимутальных проекций имеют форму концентрических окружностей с центром в ТНИ. Главные направления следуют по радиусу и перпендикулярным им линиям. Название этой группы проекций связано с тем, что на картографической сетке, построенной в азимутальной проекции, в бывшей точке касания глобуса и плоскости (т. е. в точке нулевых искажений) азимуты всех направлений не искажаются

Поликонические проекции. Построение сетки в поликонической проекции можно представить путем проектирования участков градусной сетки глобуса на поверхность нескольких касательных конусов и последующей развертки в плоскость образовавшихся на поверхности конусов полос. Общий принцип такого проектирования показан на рисунке 8. Буквами на рисунке 8, А обозначены вершины конусов.,На каждый проектируют широтный участок поверхности глобуса, примыкающий к параллели касания соответствующего конуса. После развертки конусов получают изображение этих участков в виде полос на плоскости; полосы соприкасаются по среднему меридиану карты. Окончательный вид сетка получает после ликвидации разрывов между полосами путем растяжений.

рис.8

Для внешнего облика картографических сеток в поликонической проекции характерно, что меридианы имеют форму кривых линий (кроме среднего - прямого), а параллели - дуги эксцентрических окружностей. В поликонических проекциях, используемых для построения мировых карт, приэкваториальный участок проектируют на касательный цилиндр, поэтому на полученной сетке экватор имеет форму прямой линии, перпендикулярной среднему меридиану.

Картографические сетки в поликонических проекциях имеют в приэкваториальных участках масштабы длин, близкие к главным. Вдоль меридианов и параллелей они увеличены сравнительно с главным масштабом, что особенно заметно в периферийных частях. Соответственно в этих частях значительно искажены и площади

Условные проекции . К условным относят такие проекции, в которых вид получаемых картографических сеток невозможно представить на основе проектирования на какую-нибудь вспомогательную поверхность. Получают их часто аналитическим путем (на основе решения систем уравнений). Это очень большая группа проекций. Из них выделяют по особенностям внешнего вида картографической сетки псевдоцилиндрические проекции (рис.9). Как видно из рисунка, у псевдоцилиндрических проекций экватор и параллели - прямые, параллельные друг другу (что роднит их с цилиндрическими проекциями), а меридианы у них - кривые линии.

Рис.9

.

Вид эллипсов искажений в проекциях равновеликих - А, равноугольных - Б, произвольных - В, в том числе, равнопромежуточных по меридиану - Г и равнопромежуточных по параллели - Д. На схемах показано искажение угла 45°

Картографические проекции различают по характеру искажений и по построению. По характеру искажений выделяют проекции:

1) Равноугольные, сохраняющие величину углов, здесь а= b . Эллипсы искажений имеют вид окружностей разной площади.

2) Равновеликие, сохраняющие площади объектов. В них р =mn cos e =l; следовательно, увеличение масштаба длин по параллелям вызывает уменьшение масштаба длин по меридианам и искажение углов и форм.

3) Произвольные, искажающие углы и площади. Среди них выделяется группа равнопромежуточных проекций, в которых сохраняется главный масштаб по одному из главных направлений.

Большое практическое значение имеет подразделение проекций по территориальному охвату на проекции для карт мира, полушарий, материков и океанов, государств и их частей.

Ниже приведены таблицы внешних признаков широко распространенных проекций для разных территорий, составленные.

Таблица 1

Таблица для определения картографических сеток карт восточного и западного полушарий

Как изменяются промежутки по:

Среднему меридиану и экватору

Меридиану и экватору от центра к краям полушария

Какими линиями изображаются параллели

Название проекций

Уменьшаются от 1 приблизительно до 0,7

Кривыми, увеличивающими кривизну с удалением от среднего меридиана к крайним

Равновеликая экваториальная азимутальная Ламберта

Уменьшаются от 1 приблизительно до 0,8

Экваториальная азимутальная Гинзбурга

Увеличиваются от 1 приблизительно до 2

Дугами окружностей

Экваториальная стереографическая

Сильно уменьшаются

Экваториальная ортографическая

Таблица 2

Таблица для определения проекций картографических сеток мировых карт

Форма рамки, карты или вид всей сетки

Какими линиями изображаются параллели и меридианы

Как изменяются, промежутки по среднему меридиану с удалением от экватора

Название проекции

Рамка-прямоугольник

Параллели-прямые, меридианы-кривые

Увеличиваются между параллелями 70 и 80° почти в 1,5 раза больше чем между экватором и параллелью 10°

Псевдоцилин-дрическая проекция ЦНИИГАиК

Сетка и рамка- прямоугольник

Параллели и меридианы-прямые

Сильно увеличиваются: между параллелями 60 и 80° приблизительно в 3 раза больше, чем между экватором и параллелью 20°

Цилиндрическая Меркатора

Сетка и рамка- прямоугольник

Параллели меридианы-прямые

Увеличиваются:

параллелями

приблизительно

в 2 2/з раза

больше, чем

между экватором

и параллелью 20°

Цилиндрическая Урмаева

Определение картографических проекций географических карт определяют при помощи таблиц и вычислений. Прежде всего выясняют, какая территория изображена на анализируемой карте и какой таблицей следует воспользоваться при определении проекции. Затем определяют вид параллелей и меридианов и характер промежутков между параллелями по прямому меридиану. Определяют также характер меридианов: не являются ли они прямыми или же прямой только средний меридиан а остальные - кривые, симметричные относительно среднего. Прямолинейность меридианов проверяется при помощи линейки. Если меридианы оказались прямыми, уточняют, параллельны ли они между собой. При рассмотрении параллелей выясняют, являются ли параллели дугами окружностей, кривыми или прямыми линиями. Это устанавливается путем сравнения стрелок провеса для дуг равных хорд: при равных стрелках провеса линии - дуги окружностей, при неравных стрелках провеса параллели - сложные кривые. Для выяснения характера кривизны линии можно поступить также следующим образом. На листе кальки отмечают три точки этой кривой. Если при передвижении листка вдоль линии все три точки совпадут с кривой, то данная кривая будет дугой окружности. Если параллели окажутся дугами, следует проверить их концентричность, для чего измеряют расстояния между соседними параллелями в середине карты и на краю. При постоянстве этих расстояний дуги концентричны.

Как прямые конические, так и азимутальные полярные проекции имеют прямолинейные, расходящиеся из одной точки меридианы. Участок сетки прямой конической проекции можно отличить от участка сетки полярной азимутальной проекции путем измерения угла между двумя меридианами, отстоящими друг от друга на 60-90°. Если этот угол оказался меньше соответствующей разности долгот, подписанных на карте, то это - коническая проекция, если равен разности долгот - азимутальная.

Определение средних размеров искажений для географических объектов может быть выполнено двумя путями:

1) посредством измерения отрезков меридианов и параллелей по карте и последующих вычислений по формулам;

2) по картам с изоколами.

В первом случае сначала вычисляют частные масштабы по меридианам (т) и параллелям \{п) и выражают их в долях главного масштаба:

где -l 1 длина дуги меридиана на карте, L 1 -длина дуги меридиана на эллипсоиде, l 2 - длина дуги параллели на карте, L 2 - длина дуги параллели на эллипсоиде { L 1 и L 2 берут из таблиц приложения; М - знаменатель главного масштаба.

Затем измеряют на карте транспортиром угол e между касательными к параллели и меридиану в заданной точке; определяют отклонение угла q от 90°; e =q -90°.

На основе известных формул, вычисляют величины искажений р, a , b , w , к.

Во втором случае – используют карты изокол. С этих карт берут значения для 2-3 точек объектов с точностью, допускаемой визуальным интерполированием, затем можно установить, к какой группе по характеру искажений относится данная проекция.

Картографическая проекция — это способ перехода от реальной, геометрически сложной земной поверхности .

Сферическую поверхность невозможно развернуть на плоскости без деформаций - сжатия или растяжения. Это значит, что всякая карта имеет те или иные искажения. Различают искажения длин площадей, углов и форм. На крупномасштабных картах (см. ) искажения могут быть практически неощутимы, но на мелкомасштабных они бывают очень велики. Картографические проекции обладают разными свойствами в зависимости от характера и размера искажений. Среди них различают:

Равноугольные проекции . Они сохраняют без искажения углы и формы малых объектов, зато в них резко деформируются длины и площади объектов. По картам, составленным в такой проекции, удобно прокладывать маршруты судов, но невозможно измерять площади;

Равновеликие проекции. Они не искажают площадей, но углы и формы в них сильно искажены. Карты в равновеликих проекциях удобны для определения размеров государства, ;
Равнопромежуточные. Они имеют постоянный масштаб длин по одному направлению. Искажения углов и площадей в них уравновешены;

Произвольные проекции . Они имеют искажения и углов и площадей в любых соотношениях.
Проекции различаются не только по характеру и размеру искажений, но и по виду поверхности, которую используют при переходе от геоида к плоскости карты. Среди них различают:

Цилиндрические , когда проектирование с геоида идет на поверхность цилиндра. Цилиндрические проекции чаще всего применяют в . Они обладают наименьшими искажениями в области экватора и средних широт. Эту проекцию чаще всего применяют для создания карт мира;

Конические . Эти проекции чаще всего выбирали для создания карт бывшего СССР. Наименьшее количество искажений при конических проекциях 47° . Это очень удобно, поскольку между указанными параллелями размещались основные хозяйственные зоны этого государства и здесь была сосредоточена максимальная нагрузка карт. Зато в конических проекциях сильно искажаются районы, лежащие в высоких широтах и акватории ;

Азимутальная проекция . Это такой вид картографической проекции, когда проектирование ведется на плоскость. Такой вид проекции применяют при создании карт или или какого-либо другого района Земли.

В результате картографических проекций каждой точке на земном шаре, обладающей определенными координатами, соответствует одна и только одна точка на карте.

Кроме цилиндрической, конической и картографических проекций, существует большой класс условных проекций, при построении которых пользуются не геометрическими аналогами, а лишь математическими уравнениями нужного вида.

3. И наконец заключительным этапом создания карты является отображение уменьшенной поверхность эллипсоида на плоскости, т.е. применение картографической проекции (математический способ изображения на плоскости пов-ти эллипсоида.).

Поверхность эллипсоида нельзя без искажения развернуть на плоскость. Поэтому она проецируется на фигуру, которую можно развернуть на плоскость (Рис). При этом возникают искажения углов между параллелями и меридианами, расстояний, площадей.

Существует несколько сотен проекций, которые используются в картографии. Разберем далее их основные типы, не вдаваясь во все многоообразие деталей.

В соответствии с типом искажений проекци деляться на:

1. Равноугольные (конформные) – проекции, не искажающие углов. При этом сохраняется подобие фигур, масштаб изменяется с изменением широты и долготы. Отношение площадей не сохраняется на карте.

2. Равновеликие (эквивалентные) – проекции, на которых масштаб площадей везде одинаков и площади на картах пропорциональны соответствующим площадям на Земле. Однако масштаб длин в каждой точке разный по разным направлениям. не сохраняются равенство углов и подобие фигур.

3. Равнопромежуточные проекции- проекции, сохраняющие постоянство масштаба по одному из главных направлений.

4. Произвольные проекции - проекции, не относящиеся ни к одной из рассмотренных групп, но обладающие какими-либо другими, важными для практики свойствами, называются произвольными.

Рис. Проецирование эллипсоида на фигуру, разворачиваемую в плоскость.

В зависимости от того на какую фигуру проецируется поверхность эллипсоида (цилиндр, конус или плоскость) проекции делятся на три основных типа: цилиндрические, конические и азимутальные. Тип фигуры, на которую проецируется эллипсоид определяет вид параллелей и меридианов на карте.

Рис. Различие проекций по типу фигур на которую проецируется поверхность эллипсоида и вид разверток этих фигур на плоскости.

В свою очередь в зависимости от ориентации цилундра либо конуса относительно эллипсоида цилиндрические и конические проекции могут быть: прямыми - ось цилиндра или конуса совпадает с осью Земли, поперечными - ось цилиндра или конуса перпендикулярна оси Земли и косыми - ось цилиндра или конуса наклонена к оси Земли под углом, отличным от 0° и 90°.

Рис. Различие проекций по ориентации фигуры на которую проецируется эллипсоид относительно Земной оси.

Конус и цилиндр могут либо касаться поверхности эллипсоида, либо пересекать ее. Взависимости от этого проекция будет касательная или секущая. Рис.



Рис. Касательная и секущая проекции.

Нетрудно заметить (рис), что длина линии на эллипсоиде и длина линии на фигуре которую он проецируется будет одна и таже вдоль экватора, касательной к конусу для касательной проекции и вдоль секущих линий конуса и цилиндра при секущей проекции.

Т.е. для этих линий масштаб карты будет точно соответствовать масштабу эллипсоида. Для остальных точек карты масштаб будет несколько больше или меньше. Это необходимо учитывать при нарезке листов карты.

Касательная к конусу для касательной проекции и секущие конуса и цилиндра для секущей проекции называются стандартными параллелями.

Для азимутальной проекции также существует несколько разновидностей.

В зависимости от ориентации касательной к эллипсоиду плоскости азумутальная проеция может быль полярной, экваториальной или косой (рис)

Рис. Виды Азимутальной проекции по положению касательной плоскости.

В зависимости от положения воображаемого источника света, который проецирует эллипсоид на плоскость – в центре эллипсоида, на полюсе, или на бесконечном удалении различают гномоническую (цетрально-перспективную), стереографическую и ортографическую проекции рис

Рис. Виды азимутальной проеции по положению воображаемого источника света.

Географические координаты любой точки эллипсоида остаются неизменными при любом выборе картографической проекции (определяются только выбранной системой «географических» координат). Однако наряду с географическими, для проекций эллипсоида на плоскости используют так называемые спроектированная системы координат. Это прямоугольные системы координат - с началом координат в определенной точке, чаще всего имеющей координаты 0,0. Координаты в таких системах измеряются в единицах длины (метрах). Более подробно об этом речь пойдет ниже при рассмотрении конкретных проекций. Часто при упоминании о системы координат слова «географические» и «спроецированная», опускают, что приводит к некоторой путанице. Географические координаты определяются выбранным эллипсоидом и его привязками к геоиду, «спроецированные» - выбранным типом проекции уже после выбора эллипсоида. В зависимости от выбранной проекции одним «географическим» координатам могут соответствовать разные «спроецированные». И наобоот одним и тем же «спроецированным» координатам могут соответствовать разные «географические», если проекция применена к разным эллипсоидам. На картах могут обозначаться одновременно как те так и другие координаты и «спроецированные» тоже являются географическими, если понимать дословно, что они описывают Землю. Подчеркнем, еще раз, что принципиальным является то, что «спроецированные» координаты связаны с типом проекции и измеряются, в единицах длины (метрах), а «географические» не зависят от выбранной проекции.

Рассмотрим теперь более детально две картографические проекции, наиболее важные для практической работе в археологии. Это проекция Гаусса-Крюгера и проекция Universal Transverse Mercator (UTM) – разновидности равноугольной поперечно (transverse)-цилиндрической проекции. Проекцию называют по имени флпмпндского картографа Меркатора, впервые применившему прямую цилиндрическую проекцию при создании карт.

Первая из этих проекций была разработана немецким математиком Карлом Фридррихом Гауссом в 1820-30 гг. для картографирования Германии - так называемой ганноверской триангуляции. Как истинно великий математик, он решил эту частную задачу в общем виде и сделал проекцию, пригодную для картографирования всей Земли. Математическое описание проекции было опубликовано в 1866 г. В 1912-19 гг. другой немецкий математик Крюгер Иоганнес Генрих Луис провел исследование этой проекции и разработал для нее новый, более удобный математический аппарат. С этого времени проекция называется по их именам - проекцией Гаусса-Крюгера

Проекция UTM была разработана после Второй Мировой Войны, когда страны НАТО пришли к согласию, что необходима стандартная пространственная система координат. Так как каждая из армий стран НАТО использовала свою собственную пространственную систему координат, было невозможным точно координировать военные перемещения между странами. Опрделение параметров системы UTM было опубликовано Армией США в 1951 г.

Для получения картографической сетки и составления по ней карты в проекции Гаусса-Крюгера поверхность земного эллипсоида разбивают по меридианам на 60 зон по 6° каждая. Как нетрудно заметить это соответствует разбиению Земного шара на 6°-е зоны при построении карты масштаба 1:100000. Зоны нумеруются с запада на восток, начиная с 0°: зона 1 простирается с меридиана 0° до меридиана 6°, ее центральный меридиан 3°. Зона 2 - с 6° до 12°, и т. д. Нумерация номенклатурных листов начинается с 180°, например, лист N-39 находится в 9-й зоне.

Для связи долготы точки λ и номера n зоны в которой точка находится можно использовать соотношения:

в Восточном полушарии n = (целая часть от λ/ 6°) + 1, где λ – градусы восточной долготы

в Западном полушарии n = (целая часть от (360-λ)/ 6°) + 1, где λ – градусы западной долготы.

Рис. Разбиение на зоны в проекции Гауса-Крюгера.

Далле каждая из зон проектируется на поверхность цилиндра, а цилиндр разрезается по образующей и разворачивается на плоскость. Рис

Рис. Система координат в пределах 6 градусных зон в проекциях ГК и UTM.

В проекции Гаусса-Крюгера цилиндр касается эллипсоида по центральному меридиану и масштаб вдоль него равен 1. рис

Для каждой зоны отсчет координат X, Y ведется в метрах от начала координат зоны, причем Х расстояние от экватора (по вертикали!), а Y- по горизонтали. Вертикальные линии сетки параллельны центральному меридиану. Начало координат смещено, от центрального меридиана зоны на запад (или центр зоны смещен на восток, для обозначения этого смещения часто используют английский термин – «false easting») на 500000 м для того, чтобы координата Х была положительной во всей зоне т. е. координата X на центральном меридиане равна 500 000 м.

В южном полушарии в тех же целях вводится северное смещение (false northing) 10 000 000 м.

Координаты записыватся в виде Х=1111111.1 м, Y=6222222,2 м либо

X s =1111111.0 м, Y=6222222,2 м

X s - означает, что точка в южном полушарии

6 – первая или две первые цифры в Y координате (соответственно всего 7 или 8 цифр до запятой) означают номер зоны. (Санкт-Петербург, Пулково -30 град 19 минут восточной долготы 30:6+1=6 - 6 зона).

В проекции Гаусса–Крюгера для эллипсоида Красовского составлены все топографические карты СССР масштаба 1:500000 и крупнее применение этой проекции в СССР началовсь в 1928 году.

2. Проекция UTM в целом аналогична проеции Гаусса-Крюгера, однако нумерация 6-градусных зон ведется по другому. Отсчет зон происходит от 180 меридиана на восток, таким образом номер зоны в проекции UTM на 30 больше, чем системе координат Гаусса-Крюгера (Санкт-Петербург, Пулково -30 град 19 минут восточной долготы 30:6+1+30=36 - 36 зона).

Кроме того UTM - это проекция на секущий цилиндр и масштаб равен единице вдоль двух секущих линий, отстоящих от центрального меридиана на 180 000 м.

В проекции UTM координаты приводятся в виде: Северное полушарие, 36 зона, N (северное положение)=1111111.1 м, E (восточное положение)=222222.2м. Начало координат каждой зоны также смещено на 500000 м на запад от центрального меридиана и на 10000000 на юг от экватора для южного полушария.

В проекции UTM составлены современные карты многих стран Европы.

Сравнение проекций Гаусса-Крюгера и UTM приведено в таблице

Параметр UTM Гаус-Крюгер
Величина зоны 6 градусов 6 градусов
Нулевой меридиан -180 градусов 0 градусов (Гринвич)
Масштаб коэф = 1 Секущие на расст 180 км от центр.меридиана зоны Центральный меридиан зоны.
Центральный меридиан иоответствующая ему зона 3-9-15-21-27-33-39-45 и.т.д 31-32-33-34-35-35-37-38-… 3-9-15-21-27-33-39-45 и.т.д 1-2-3-4-5-6-7-8-…
Соответствующая центр мердиану зона 31 32 33 34
Масштабный коэфф. по центральному меридиану 0,9996
Ложный восток (м) 500 000 500 000
Ложный север (м) 0 – северное полушарие 0 – северное полушарие
10 000 000 – южное полушарие

Забегая вперед следует отметить, что большинство GPS навигаторов может показывать координаты в поекции UTM, но не могут в проекции Гаусса-Крюгера для эллипсода Красовского (т.е. в системе координат СК-42).

Каждый лист карты или плана имеет законченное оформление. Основными элементами листа являются: 1) собственно картографическое изображение участка земной поверхности, координатная сетка; 2) рамка листа, элементы которой определены математической основой; 3) зарамочное оформление (вспомогательное оснащение), которое включает данные, облегчающие пользование картой.

Картографическое изображение листа ограничивается внутренней рамкой в виде тонкой линии. Северная и южная стороны рамки - отрезки параллелей, восточная и западная - отрезки меридианов, значение которых определяется общей системой разграфки топографических карт. Значения долготы меридианов и широты параллелей, ограничивающих лист карты, подписываются возле углов рамки: долгота на продолжении меридианов, широта на продолжении параллелей.

На некотором расстоянии от внутренней рамки вычерчивается так называемая минутная рамка, на которой показаны выходы меридианов и параллелей. Рамка представляет собой двойную линию, расчерченную на отрезки, соответствующие линейной протяженности 1" меридиана или параллели. Количество минутных отрезков на северной и южной сторонах рамки равно разности значений долготы западной и восточной сторон. На западной и восточной сторонах рамки количество отрезков определяется разностью значений широты северной и южной сторон.

Завершающим элементом является внешняя рамка в виде утолщенной линии. Часто она составляет одно целое с минутной рамкой. В промежутках между ними дается разметка минутных отрезков на десятисекундные, границы которых отмечены точками. Это упрощает работу с картой.

На картах масштаба 1: 500 000 и 1: 1 000 000 дается картографическая сетка параллелей и меридианов, а на картах масштаба 1: 10 000 - 1: 200 000 - координатная сетка, или километровая, так как линии ее проводятся через целое число километров (1 км в масштабе 1: 10 000 - 1: 50 000, 2 км в масштабе 1: 100 000, 4 км в масштабе 1: 200 000).

Значения километровых линий подписываются в промежутках между внутренней и минутной рамками: абсциссы на концах горизонтальных линий, ординаты на концах вертикальных. У крайних линий указываются полные значения координат, у промежуточных - сокращенные (только десятки и единицы километров). Кроме обозначений на концах часть километровых линий имеет подписи координат внутри листа.

Важным элементом зарамочного оформления являются сведения о среднем на территорию листа карты магнитном склонении, относящиеся к моменту его определения, и годовом изменении магнитного склонения, которые помещают на топографических картах масштаба 1:200 000 и крупнее. Как известно магнитный и географический полюса не совпадают и стрелка копмаса показывает направление несколько отличающееся от на правленя на географический пояс. Величину этого отклонения и называют магнитным склонением. Оно может быть восточное, либо западное. Прибавив к величине магнитного склонения годовое изменение магнитного склонения, умноженное на число лет пошедщих с момента создания карты до текущего момента определить магнитное склонение на текущий момент.

В заключении темы об основах картографии остановимся кратко на истории картографии в России.

Первые карты с отображенной географической системой координат (карты России Ф. Годунова (издана в 1613г.), Г. Геритса, И. Массы, Н. Витсена) появились в XVII веке.

В соответствии с законодательным актом русского правительства (боярским “приговором”) от 10 января 1696 «О снятии чертежа Сибири на холсте с показанием в оном городов, селений, народов и расстояний между урочищами» С.У. Ремизовым (1642-1720) создается огромное (217х277 см) картографическое произведение «Чертеж всех сибирских градов и земель», ныне находится в постоянной экспозиции Государственного Эрмитажа. 1701 г. - 1 января – дата, стоящая на первом титульном листе Атласа России Ремизова.

В 1726-34 гг. выходит в свет первый Атлас Всероссийской Империи, руководителем работ по созданию которого был обер-секретарь Сената И. К. Кириллов. Атлас был издан на латинском языке, и состоял из 14 специальных и одной генеральной карты под заглавием "Atlas Imperii Russici". В 1745 году был издан "Атлас Всероссийский". Первоначально работами по составлению атласа руководил академик, астроном И. Н. Делиль, представивший в 1728 г. проект составления атласа Российской империи. Начиная с 1739 года выполнение работ по составлению атласа осуществлял учрежденный по инициативе Делиля Географический департамент Академии Наук, задачей которого было составление карт России. Атлас Делиля включает комментарии к картам, таблицу с географическими координатами 62 городов России, легенду карт и сами карты: Европейской России на 13 листах при масштабе 34 версты в дюйме (1:1428000), Азиатской России на 6 листах в меньшем масштабе и карту всей России на 2-х листах в масштабе около 206 верст в дюйме (1:8700000) Атлас издан в виде книги параллельными изданиями на русском и латинском языках с приложением Генеральной Карты.

При создании атласа Делиля большое внимание уделялось математической основе карт. Впервые в России проводилось астрономическое определение координат опорных пунктов. В таблице с координатами указан способ их определения – "по достоверным основаниям" либо "при сочинении карты" В течение XVIII века в общей сложности было сделано 67 полных астрономических определений координат, относящихся к наиболее важным городам России, а также выполнено 118 определений пунктов по широте. На территории Крыма были определены 3 пункта.

Со второй половины XVIII в. роль главного картографо-геодезического учреждения России постепенно стало выполнять Военное ведомство

В 1763 г. был создан Особый Генеральный штаб. Туда были отобраны несколько десятков офицеров, которыеофицеры командировались для снятия районов расположения войск, маршрутов их возможного следования, дорог, по которым проходили сообщения воинскими подразделениями. По сути эти офицеры были первыми российскими военными топографами, которые выполнили первичный объем работ по картографированию страны.

В 1797 г. было учреждено Депо карт. В декабре 1798 г. Депо получило право контроля над всеми топографическими и картографическими работами в империи, а в 1800 г. к нему был присоединен Географический департамент. Все это сделало Депо карт центральным картографическим учреждением страны. В 1810 г. Депо карт перешло в ведение военного министерства.

8 февраля (27 января по старому стилю) 1812 г., когда было высочайшее утверждено «Положение для Военного Топографического Депо» (далее ВТД), в которое Депо карт вошло как особое отделение – архив военно-топографического депо. Приказом Министра обороны Российской Федерации от 9 ноября 2003 г. становлена дата годового праздника ВТУ ГШ ВС РФ – 8 февраля.

В мае 1816 г. ВТД было введено в состав Главного штаба, при этом директором ВТД назначался начальник Главного штаба. С этого года ВТД (независимо от переименований) постоянно находится в составе Главного или Генерального штаба. ВТД руководило созданным в 1822 году Корпусом топографов (после 1866 года -Корпусом военных топографов)

Важнейшими результатами работ ВТД на протяжении почти целого столетия после его создания являются три большие карты. Первая - специальная карта европейской России на 158 листах, размером 25х19 дюймов, в масштабе 10 верст в одном дюйме (1:420000). Вторая - военно-топографической карты Европейской России в масштабе 3 версты в дюйме (1:126000), проекция карты коническая Бонна, долгота считается от Пулково.

Третья - карта Азиатской России на 8 листах размером 26х19 дюймов, в масштабе 100 верст в дюйме (1:42000000). Кроме этого для части России, особенно для приграничных районов были подготовлены карты в полуверстовом (1:21000) и верстовом (1:42000) масштабе (на эллипсоиде Бесселя и проекции Мюфлинга).

В 1918 г. в состав созданного Всероссийского Главного штаба вводится Военно-топографическое управление (правопреемник ВТД), которое в дальнейшем до 1940 г. принимало разные названия. В подчинении этого управления на ходится и корпус военных топографом. С 1940 г. по настоящее время оно именуется «Военно-топографическое управление Генерального штаба Вооруженных Сил».

В 1923 года Корпус военных топографов был преобразован в военно-топографическая службу.

В 1991 году, была образована Военно-топографическая служба Вооружённых сил России, которая в 2010 году была преобразована в Топографическую службу Вооружённых сил Российской Федерации.

Следует сказать так же о возможности использования топографических карт в исторических исследованиях. Мы будем говорить только о топографических картах, созданных в XVII веке и позднее, построение которых опиралось на математические законы и специально проводившееся систематическое обследование территории.

Общие топографические карты отражают физическое состояние местности и ее топонимику на момент составления карты.

Карты мелких масштабов (более 5 верст в дюйме – мельче 1:200000) возможно использовать для локализации указанных на них объектов, лишь с большой неопределенностью в координатах. Ценность содержащейся информации в возможности выявления изменения топонимики территории, главным образом при ее сохранении. Действительно, отсутствие топонима на более поздней карте может свидетельствовать об исчезновении объекта, изменении названия, либо просто о его ошибочном обозначении, в то же время как его наличие будет подтверждать более старую карту причем, как правило, в таких случаях возможна более точная локализация..

Карты крупных масштабов дают наиболее полную информацию о территории. Они могут быть непосредственно использованы для поиска обозначенных на них и сохранившихся до настоящего времени объектов. Развалины построек являются одним из элементов, входящим в легенду топографических карт, и, хотя, лишь немногие из обозначенных развалин относятся к памятникам археологии, их идентификация является вопросом, заслуживающим рассмотрения.

Координаты сохранившихся объектов, определенные по топографическим картам СССР, либо путем непосредственных измерений при помощи глобальной космической системы местоопределения (GPS), могут быть использованы для привязки старых карт к современным системам координат. Однако даже карты начала-середины XIX века могут на отдельных участках территории содержать значительные искажения пропорций местности и процедура привязки карт состоит не только из соотнесений начал отсчета координат, но требует неравномерного растяжения или сжатия отдельных участков карты, которое осуществляется на основе знания координат большого количества опорных точек (так называемая трансформация изображения карты).

После проведения привязки, возможно, осуществить сравнение знаков на карте, с объектами присутствующими на местности в настоящее время, либо существовавшими в периоды предшествующие или последующие времени ее создания. Для этого необходимо производить сопоставление имеющихся карт разных периодов и масштабов.

Крупномасштабные топографические карты XIX века представляются весьма полезными при работе с межевыми планами XVIII - XIX веков, как связующее звено между этими планами и крупномасштабными картами СССР. Межевые планы составлялись во многих случаях без обоснования на опорных пунктах, с ориентировкой по магнитному меридиану. В силу изменений характера местности, вызванных природными факторами и деятельностью человека, непосредственное сопоставление межевых и прочих детальных планов прошлого века и карт XX века не всегда возможно, однако сопоставление детальных планов прошлого века с современной им топографической картой представляется более простым.

Еще одна интересная возможность применения крупномасштабных карт их использование для изучения изменений контуров берега. За последние 2,5 тысячи лет уровень, например, Черного моря повысился, как минимум на несколько метров. Даже за прошедшие с момента создания первых карт Крыма в ВТД два столетия, положение береговой линии в ряде мест могло сместиться на расстояние от нескольких десятков до сотен метров, главным образов вследствие абразии. Такие изменения вполне соизмеримы с размерами достаточно крупных по античным меркам поселений. Выявление поглощенных морем участков территории может способствовать открытию новых археологических памятников.

Естественно, что основными источниками по территории Российской империи для указанных целей, могут выступать трехверстная и верстовая карты. Использование геоинформационных технологий позволяет накладывать друг на друга и привязывать их к современным картам, совмещать слои крупномасштабных топографических карт различного времени и далее дробить их на планы. Причем планы создаваемые сейчас, как и планы XX века, окажутся привязанными к планам XIX века.


Современные значения параметров Земли: Экваториальный радиус, 6378 км. Полярный радиус, 6357 км. Средний радиус Земли, 6371 км. Длина экватора, 40076 км. Длина меридиана, 40008 км...

Здесь, конечно, надо учитывать, что величина самого «стадия» вопрос дискуссионный.

Диоптр - прибор, служащий для направления (визирования) известной части угломерного инструмента на данный предмет. Направляемая часть снабжается обыкновенно двумя Д. - глазным , с узким прорезом, и предметным , с широким прорезом и волоском, натянутым посередине (http://www.wikiznanie.ru/ru-wz/index.php/Диоптр).

По материалам сайта http://ru.wikipedia.org/wiki/Советская _система_разгравки_и_номенклатуры_топографических_карт#cite_note-1

Герхард Меркатор (1512 - 1594) - латинизированное имя Герарда Кремера (и латинская, и германская фамилии означают «купец»), фламандского картографа и географа.

Описание зарамочного оформления приводится по работе: «Топография с основами геодезии». Под ред. А.С.Харченко и А.П.Божок. М - 1986

С 1938 года в течении 30 лет ВТУ (при Сталине, Маленкове, Хрущеве, Брежневе) возглавлял генерал М.К.Кудрявцев. Никто на подобной должности ни в одной армии мира такое время не держался.